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Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics
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A two-dimensional two-phase lattice-Boltzmann model is presented and used for the study of interfacial
phenomena under static and flow conditions. The model is based on the nonideal lattice-Boltzmann model
proposed originally by Swift, Osborn, and Yeom4R#ys. Rev. Lett75, 830(1995] and makes it possible to
couple a prescribed equation of state with the pressure tensor at the interface and the excess free-energy density
formalism. The characteristic feature of the present model is that Galilean invariance is restored in the presence
of interfaces without sacrificing any of the merits of the original model and, hence, the Navier-Stokes equation
is adequately(to second orderrecovered. The fluid properties can be prescribed in a thermodynamically
consistent manner, which remains accurate at states close to the critical point. The model is first validated
through static equilibrium tests and then applied to flow systems. It is shown that the simulator can reproduce
some known two-phase flow configurations, like the motion of deformable droplets under the action of an
external flow field. The simulator can also capture some interesting events during jet breakup and can be useful
for the parametric study of the process in the two-dimensional case.
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[. INTRODUCTION fied their model by replacing the collision operator with a
single-time relaxation factor. In these models, phase separa-
Lattice-Boltzmann(LB) methods have provided a power- tion is achieved through a phenomenological “antidiffusion”
ful alternative to traditional numerical techniques for thepotential, which can be somehow connected to the interfacial
study of equilibrium and dynamic properties of fluid sys-tension. Appert and co-workersl2,13 proposed a two-
tems. Since the first attempts to simulate hydrodynamic phegghase LG model, which was based on the basic LG single-
nomena using lattice-gad-G) automata by Frisch, Has- phase model with the additional feature of allowing for mo-
slacher, and Pomed&HP) [1], numerous publications have mentum exchange between remote particles. The interaction
appeared in this area, reflecting very intensive research eéf those particles eventually leads to phase transition. The
forts in mesoscopic simulations of fluid systems. The initialmomentum exchange is dictated either by a simple set of
drawbacks of numerical noise, non-Galilean invariance, andules, based mainly on the distance of particles considered in
velocity dependent pressure of the lattice-gas methods wergairs, or by more complicated rules, applied to the entire
later addressed successfully in the lattice-Boltzmann methogbarticle ensemble. Shan and CHéd] proposed an alterna-
The LG Boolean variables and the Fermi-Dirac equilibriumtive approach: a special microscopic interaction affecting
distribution function [2] have been replaced by single- nearest neighbors only can be shown to correspond to a non-
particle distribution functions and Boltzmann statis{i8sd].  ideal equation of state, allowing thus for coexistence of two
Furthermore, the collision operator formulation was replacedr more phases. A temperaturelike parameter is involved in
by the single relaxation time approximation, introduced ini-the modeling of the phase transition.

tially by Bhatnagar, Gross, and KroolBGK) [5], which Swift and co-workerg15,16] proposed a LB model for
simplified considerably the LB formulation and numerical isothermal two-phase systems, using a Cahn-Hilligid]
computations. type of approach for phase transition. The system reaches

LG and LB models proved very useful in the particular equilibrium when the free-energy functional, quantified ac-
case of two-phase flow due to both the complexity encouneording to the van der Waals square-gradient approximation
tered when traditional techniques were to be employed in thgl8], is minimized. The interfacial phenomena are controlled
interface region and the strong scientific and technologicaby the pressure tensor, suitably formulated for nonideal flu-
interest of multiphase systems. Rothman and KéBéipro-  ids, whereas the surface tension is expressed according to the
posed a two-component LG model, whereas Gustensen an@n der Waals theory of capillarity. Angelopoulesal. [19]
co-workers [7,8] employed Boltzmann statistics in their introduced a methodology for the prescription of the fluid
model introducing, thus, a multiphase LB model. Modifica- properties in this LB model and applied it to two-phase flow
tions to account for different viscosities and rest particleproblems, such as drainage and imbibition in porous media,
populations in the two phases and to satisfy the standardnder various wettability conditions.
interfacial conditions at first order were proposed by Ginz- Recent LB multiphase techniques have adopted the direct
bourg and Adleff9]. Grunau and co-workefd0,11] simpli-  discretization of the full Boltzmann equation, initially pro-

posed by He and Luf20], Luo [21], and, independently, by
Abe [22]. In order to account for the nonideality of dense
*Corresponding author. Email address: vbur@iceht.forth.gr gases, the extended Boltzmann equation, as initially proosed
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by Enskod 23], should be used. Including terms that become  {®9=A+B(e;-u)+C(e;-u)?+Du+G:eje +Fe;,

non-negligible for dense fluid1], such as the volume ex- (23
clusion corrections, the extended discrete Boltzmann equa-
tion leads to a nonideal state equation, which allows for fe9=Ag+Dou?. (2b)

phase coexistence. In addition, He, Shan, and Dof22dh o . .
have proposed a slightly different scheme based on the dig-he coefficients for the 2D hexagonal lattice are given by
crete Boltzmann equation, assuming that the velocity deriva-

. . . . . - . ne po— mpvzp
tive of the nonequilibrium d|s_tr|but|on functionsvf q) _ A0=p—2(p0—mpV2p)=p—6A, A= ,
can be neglected. The force in the Boltzmann equation is 3

made up of two contributions, namely, the mean force on (33

each particle due to the intermolecular attraction and the

force associated with the volume exclusion efféehskog B=p/3, (3b)

analysis[23]). Consideration of these two factors leads to a B

nonideal equation of state. C=2p/3, (309
In this work, an improvement of the single-component Do — D=—0/6 (3d)

two-phase seven-bit LB model by Swift, Osborn, and Yeo- 0 P pro

mans[15] and Angelopoulogt al.[19] is proposed and used 2 2

to simulate droplet formation and droplet motion under an Gxx:T (a—p) —<a—p) }:- vy xy:2_m&_p&_p’

external flow field. A potential weakness of the original 3[1ax ay 3 Jxay

model, as has been already pointed [di,21], is the lack of (3¢

Galilean invariance. Because of that, transient or steady state Fy=F,=0 (3f)

flow simulations may lead to reduced accuracy in the calcu-
lation of the flow field or in the shape and velocity of moving wherep is density andn a fluid parametefsee below
droplets. Nevertheless, it is shown here that Galilean invari-
ance can be restored, to second-order accuracy, using a hew
formulation for the definition of the zero-order momentum
flux tensor. A similar approach to restore Galilean invariance Using the basic equilibrium equations for a van der Waals
in the nine-bit model[25] has demonstrated greatly im- fluid, Angelopouloset al.[19] derived useful expressions for
proved performance during simulation of Couette flow, andthe density variation across the interface between the gas and
shear and translation of a drop|et_ Inamuro, Konishi, andiQUid phases. The correlation between the interface thick-
Ogino [26] used an asymptotic analysis to restore GalilearessD and the equilibrium fluid densities is given by
invariance also in the nine-bit model.
This paper is .organized as foIIows.. Sectipn Il presents an m= &z (4)

outline of the original model in two-dimensiort@D) along 2(p1—pg)
with an algorithm for the step-by-step prescription of the . . . :
fluid properties. The model and the details of the formulationWhereU is the interfacial tension, expressed as
that restores Galilean invariance are also presented there. foc ( a( p(z))>2

o= d

A. Prescription of the fluid properties

Section Il shows the results of the applications of the model
to static and flow problems, including jet breakup and drop-

let formation. The main conclusions of this work are sum-in the van der Waals theor
marized in Sec. IV. Y-

The kinematic viscosity within the interface region is ap-
proximated by

2 ®)

IIl. LATTICE-BOLTZMANN TWO-PHASE MODEL
(vi=vg)p+vgp = Vipg

The lattice-Boltzmann equation in view of the BGK ap- v(p)= P~ Pg '
proximation is

(6)

where »; and v4 are the kinematic viscosities of the liquid
and vapor phases, respectively, and relate to the correspond-

fi(x,t) = ff4x,t) ing relaxation time constants through
filxre tH)=fHx)-—————, @ k
2’7'J' - 1 .
vi=—g —» 1719 7

where 7 is the relaxation time and subscripindicates the
link direction in a single celli=0,1,...b; b being the Itis shown that the mass and momentum conservation equa-
number of links from a node to its nearest neighbors and @ions for the fluid are the following:
indicating rest population Mass conservation equation,

Swift, Osborn, and Yeomarj45] proposed the following
expansion of the equilibrium distribution function for use 9 LV ou=0 ®)
with two-phase systems: at? p===
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Momentum conservation equation, K
—=2
p

P
1— 2—) v. (15b)
ap

27—1
T)p{Vw(Vu)T}

J
—(pu)+V-(puu)=-VP+V . ,
at = The LB momentum equation resembles closely the Navier-

Stokes equation except for the last two terms, which contain

+v|| 71— 1) (E_ E)p(VU) density gradients and may, thus, be responsible for the lack

2/\4 dp h of Galilean invariance. The usual assumption made in single-

271 1 9P phase systems, namely, that these additional terms are of

+Vv ( ( _Z —){ng order O(u®)—since density gradients ar®(u?)—and,
8 40 therefore, are negligiblg28], is not valid for multiphase sys-
1 /1 oP tems. The density gradients may obtain large values within

+(uVp) |+ V|| 7= 5) (Z_ (9_) the interface region, depending on the interface thickness and
p the bulk density difference. As it will be shown below, if

these effects are not accounted for properly by restoring Gal-
X(u-Vp)|[+0O(ud), 9 ilean invariance, they may lead to very erroneous results.

In index notation, the LB motion equation assumes the

where the equatiod,P,z=d,Pd,p was used, withp and following form:

fssgziti\r?eall;roscoplc local density and momentum density, i pUL) + D5(PULUR) = — 4P ot A vp(d,ug+ dgu,)]

+dg

V'Z&pu 5a)
p=> e, (10) y TrrvTep
|

pu= Z g f o (1) The symbolsi; andd, represent the spatial and time deriva-
! tives, respectively, and’ is given by

In Eq. (9), P is the pressure tensor for a nonuniform fluid

[27], v'=v 17

P=P&+mVpVp, . . .
= = pPyp In order to restore the Galilean invariance, the last two terms

or of Eq. (16) must be eliminated. A way to achieve this is by
merging them into the pressure term, which should then have

the following form:
213+mVpVp, (12

m
E=(po—mpV2p—§Vp
. _ P! a=Post {(Ugdp+Uydgp)+ED, U0 pS.g (18)
wherep, is the fluid pressure, connected to the temperature p p poab #P y wPOap

through the equation of state, amdis the parameter that .
enters the expression for the free-energy functional accord-n€ uUnknown coefficients, ¢ can subsequently be deter-
ing to the square-gradient approximation mined in order for Eq.16) to coincide with the Navier-

Stokes equation. The resulting expressions are

Flo(01= [ drtimVpo P+ 3ol (3 (== 142 19
ap|’

In Eq. (13), ¥(p) is the local free-energy density of the fluid
of uniform densityp.

Comparing Eqg.(9) with the actual Navier-Stokes equa-
tion,

A similar result for the nine-bit model but withi=» was
obtained by Inamuret al.[26] using an asymptotic analysis,
and by Holdychet al. [25], who considered the terms that
involve the pressure derivative with respect to density as
negligible. Although this assumption may be valid in many

1%
E(pl_])-l-v'(pl_ﬂ_,l):—VP+V~[,LL{Vl_,I+(Vl_,I)T}] cases, it is evident that the magnitude of #e/Jdp term
depends on the state equation and the values of the equation
+V[(k—w)V-ul+pg, (14) ~ constants. Hence, for the sake of generality, the full expres-

sion (16) was considered in the present analysis, leading to
the kinematic viscositys and the bulk viscosity« can be the appearance of the&P/Jp term in Eq.(19).

identified, as The momentum flux tensor is given by the expression
2T_1 H(O)_g feq_P/ + 20)
v= g (15@ aﬁ_i=l (glgl) i~ Tap puauB. (
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Substituting the equilibrium distribution expansion in the 20x10®~
above expression and following algebraic manipulations, it
can be shown that the momentum flux tensor can be writter

as follows:

6
;1 (81€)F* =P 5+ 1" (Ugdp+U,dgp)

+v' Y Uyd,pdapt pUaUp
Y

or

PuptpUaug=3A"8,5+3(G,+C U Up)

— v (Ugdyp+U,dgp)— v UydypBag
Y

3A =Y uyayp>5aﬁ
Y

+[3G 5= v (Ugdup+Uadgp) ]+ pU,Up.

2 m 2
Papt pUas=|Po—MpVp——|Vpl|

Combining Egs.(20)—(22), the coefficients of the equilib-

(21)

Using Eq.(12) in index notation, the left-hand side reads

(22
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Corrected model

o’ Laplace law equation
a-
Opesy  =200x10°
O = 198% 10°
0.0 v T T T g T g T T T
0.00 0.01 0.02 1R 0.03 0.04 0.05

FIG. 2. Laplace law test for a 2D droplet. The solid line repre-
sents the Laplace law equation and the symbols indicate the simu-
lation results.

Gp=GCupt 5V (UgdaptUudgp). (230

B. Boundary conditions

Three types of boundary conditions are of relevance here:
boundary conditions that induce flow, solid-fluid boundary
conditions, and conditions related to the finite size of the
working domain. Flow conditions can be implemented in
two ways: a pressur@r density gradient can be imposed in
the desired direction of flow, or the velocity can be pre-
scribed at the inlet or outlet of the system. Periodic boundary
conditions allow populations leaving the working domain to
reenter in the same direction through the opposite bound-

rium distribution expansion for the Galilean invariant model aries.

are obtainedprimed quantitiel

A’ =A+%V,zy u,d,p,

Ab=Ao—4v' X u,d.p,
Y

B'=B, C'=C, D'=D, Dg=Dy,

(23a

(23b)

(230

There are several types of solid-fluid boundary conditions
that can be used in LB models, including the typical
“bounce-back” condition and also some more complicated
ones[29]. In our computations, both the “bounce-back” and
a ‘“relaxed bounce-back” condition have been tested. The
latter is an improved “bounce-back” condition imposed at
the boundary nodes, which are also assumed to suffer colli-

201
<10° L P|-P

Corrected model * Pg'Po

1.5

PP

1.04

0.5

0.0 4 T T T T T T v
0.00 0.01 0.02 0.03 0.04 0.05
1R

FIG. 3. Comparison of the simulated pressure differeriigs

uid, vapoy from the common pressure for a flat interfagsgmbols,

FIG. 1. Solid(filled circles, fluid (open circley and boundary  with the theoretical calculations from the Gibbs-Thomson equations

(gray circles nodes in the hexagonal lattice.

(solid lines.
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t= 10000 t=50000

FIG. 4. Simulation of a moving tube contain-
ing an initially circular droplet in equilibrium
with its vapor. The original 2D two-phase model
was used. The parameter values arg=ry

t=40000 t=65000 =0.125,kT=0.37,m=0.015, the corresponding

densities of the two phases apg=4.895, pq
=2.211, and the corresponding surface tension is
0=0.02.Nge=105.

sions. Nevertheless, use of one or the other condition has no

discernible effect on the flow field provided tha&1. For P=Z fi, (24
moving walls, a “no-slip” constrain{30] is imposed on the
fluid populations that are immediately adjacent to the solid pu=2 ef;. (25

surface. The unknown distribution functions, directed from '

the solid sites into the fluid, are calculated from the localFor instance, the unknown populations in Fig. 1 move in

macroscopic densitjp) and momentumgu) equations, directions 2, 3 {,,f3). The density at the boundary node is
t= 10000 t=50000
FIG. 5. Simulation of a moving tube contain-
ing an initially circular droplet in equilibrium
with its vapor. The corrected for Galilean invari-

t=40000 t=65000

056702-5
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t=75000 IIl. RESULTS AND DISCUSSION
A. Equilibrium simulations

Before using the Galilean-invariant model in flow simu-
lations, some basic validation runs are performed. First, a
droplet at equilibrium with its vapor is simulated in the ab-
sence of external flow field. The grid size is 22828 lattice
sites and periodic boundary conditions are employed around
the working domain. The input data arg=r,=0.125,kT
=0.55,m=0.01, andp,=4.895, pg=2.211. Following the
algorithm proposed by Angelopoules al. [19] and the dis-
cussion made in Sec. Il, the corresponding van der Waals
coefficients area= 2%, b=, the interface thickness i®
=2.385, and the corresponding surface tensionris0.02.

The pressure difference across the interface is calculated af-
ter about 40 000 time steps to ensure that the system is fully
equilibrated. In Fig. 2 the pressure difference is plotted
against the droplet curvature. The continuous line represents
FIG. 6. Velocity field in and around a droplet in a moving tube, the Laplace law for the presqubed surface t‘?“s"m (
using the original 2D two-phase model. The parameter values are 0.02). An excellent agreement is noted, the maximum rela-
the same as those used in Fig. 4. tive error betwgen the prescribed surface tension and the cal-
culated one being less than 1%.
Another test of thermodynamic consistency of the model
is presented in Fig. 3. The quantities— Py andP,— P, are
| plotted against the droplet curvature, whéteis the liquid
ressurePy is the gas pressure, aig is the corresponding
dzressure for a flat interface. The parameter values are the
same as those in the Laplace law test and the grid size is
128x 128 lattice sites. The theoretical values of the afore-
p=fotf +f+fa+f+f5+ g, (26  mentioned pressure differences are calculated from the
Gibbs-Thomson equations and represented with the solid and
dashed lines for the liquid and gas phases, respectively,

also to be calculated. If the wall is impermeable, yheom-
ponent of the velocity §,) is zero. Once the horizontal ve-
locity component (,) is set to the desired value of the wal
velocity, the unknown local populations can be calculate
from the following set of equations:

pu="f1—fo+5(f+fe—f3—fs), (26b)
pr O
Pi=Pot ——=, (273
puy="%(fo+f3—fs—fs)=0. (260 PI=Pg
t=75000
Pg O
Py=Po+ =. 27b
Y p—pgR @79

Again, an excellent agreement between the theoretical and
the calculated values is obtained.

The spurious currents in the interface region are slightly
reduced upon restoration of the Galilean invariance. It was
found that for a droplet at equilibrium with its vapor
(n=v¢=0.125kT=0.37, m=0.015,0,=4.895,p4=2.211,
o=0.02) the mean magnitudes of these velocities in the two
cases are 0410 3 and 0.35 103, respectively, while the
corresponding maximum values are X.00 3 and 0.8
X 10 3. These values are quite small given that the spurious
currents in the original van der Waals LB model were al-
ready reduced by three orders of magnitude compared to
those in the two-phase LB model by Shan and Chefi,
which, in turn, were lowef31] than the LG model proposed

FIG. 7. Velocity field in and around a droplet in a moving tube, by Rothman and Kellef6] or the corresponding LB model
using the 2D two-phase model, corrected for Galilean invarianceproposed by Gustensen al.[7] and Grunau, Chen, and Eg-
The parameter values are the same as those used in Fig. 4. gert[11].
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FIG. 8. Simulation of droplet motion in a sta-
tionary tube, subject to an externally applied
pressure drop. The original 2D two-phase model
was used. The parameter values are the same as
those used in Fig. Nr=100.

B. Flow simulations ilean invariance, and the corrected model, respectively. The

Flow simulations were carried out to demonstrate theS0lid-fluid “no-slip” boundary condition mentioned in the
practical significance of the Galilean-invariance restoratiorPreceding section was used. The velocity in the direction of
in simple two-phase systems. Figures 4 and 5 show simihe tube motion (ix) was set equal to 0.1, whereas the ve-
lated snapshots of a moving tube that contains an initialljocity component normal to the walu() was set equal to
circular droplet, using the original model, which lacks Gal-zero. Periodic boundary conditions were employed in the

t= 6000 t=35000

FIG. 9. Simulation of droplet motion in a sta-
tionary tube, subject to an externally applied
pressure drop. The corrected 2D two-phase model
was used. The parameter values are the same as
those used in Fig. Nr=100.

056702-7
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the former case, the droplet acts as an obstacle to the gas

091 0 8 ¢ e o o 5 o e flow, moving at a largely different speed from that of the

tube, whereas in the latter case the droplet has acquired the

081 o speed of the tube wall.

o Similar results are obtained in flows driven by an exter-

064 o nally applied pressure drop. The tube wall is held stationary
o and, consequently, the “no-slip” solid-fluid boundary condi-

o tion is used, as mentioned in Sec. Il. The grid size is 100
ecorrected model o X 107 lattice sites. The parameter values are the same as
Soriginal model those in the moving tube case. Simulated snapshots using the

original and the corrected model are shown in Figs. 8 and 9,
respectively. Again, lack of Galilean invariance leads to an
00 — T T — elliptic shape with aspect ratio being equal to 1.8, whereas
0.00 0.02 0.04 0.06 0.08 0.10 . . .
Droplet speed the droplet remains circular in the corrected model. Along
the inlet face(left end, momentum is added to the popula-
FIG. 10. Aspect ratidsize in the direction of flow to size in the tions that enter the tube, at a rate that is proportional to the
transverse directionof droplet moving in the absence of walls vs prescribed pressure gradient. The populations that exit the
droplet velocity. Despite the use of a moving coordinate system, thg |pe through the inlet face set the corresponding populations
droplet shape remains, practically, unaffected when the correcteﬂ,]at enter through the exit fadgeriodic boundary condi-
model is usedGalilean invariance is restoredrhe parameter val- tion). In the absence of walls, the original model predicts that
;Jhees Cfﬁ;';gaﬁg;ggn%iﬁzg';ﬁ;%%ggg; (Z):gzifr—o.oz, and the aspect ratio of the droplet decreases rapidly with increas-
ing flow rate or, equivalently, with increasing speed of the
o . S coordinate system that moves along with the drogieg.
direction of the twbe motion. The grid size is 22835 lat- 10). However, restoration of the Galilean invariance removes

tice sites and the Reynolds number Nge=d(u,)/»=105, . . ;
X ) . this artifact and leaves the droplet shape practically unaf-
whered is the tube diameter andl,) is the mean value of fected by the droplet speed.

the x component of the velocity, calculated at the tube en-
trance. Figure 4 shows that the lack of Galilean invariance
leads to strong deformation of the droplet, which assumes
eventually an elliptic shape with aspect ratio equal to 3. The Jet instability and droplet formation have been studied
droplet appears to be very slightly affected by the tube mousing a variety of numerical techniques, including finite dif-

tion and by the concomitant flow that develops, and eventuferences, finite elements, and finite volumes. Recently,
ally comes to rest. On the contrary, Fig. 5 shows that théattice-Boltzmann schemes for incompressible multiphase
model allows the droplet to retain its initial shape and toflows have been developed in order to simulate the Rayleigh-
undergo a smooth motion along the mean flow directionTaylor instability and the concomitant droplet formation

Figures 6 and 7 show the corresponding velocity profile§32,33. It is beyond the scope of the present work to review
using the original and the corrected model, respectively. Irthis literature or to assess the performance of the various

Aspect ratio

0.4+

02+

C. Jet dynamics

t=1 t=1250

t=500 t=1500 FIG. 11. Simulation of droplet generation
from an orifice, using the model proposed in this
work. The parameter values arg=0.02, v
=0.05, m=103, kT=4.56x103 +=6.88
X 1072, the corresponding densities asg= 20,
pg=1, and the reduced temperature T8T,
=0.68.Np=78.

t=1000 t=3500
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FIG. 12. Simulation of sequential droplet gen-
eration from an orifice, using the model proposed
in this work. The parameter values are the same
as those used in Fig. 11.

computational techniques. Instead, it is very interesting to p kT
demonstrate here the capability of the LB two-phase model, p(p, 1) =KTIng—p— 47— —~—2ap (28
corrected for Galilean invariance, to simulate the main jet- P P
related phenomena, without resorting to any assumption reas explained by Angelopoulat al. [19].
garding the initial shape of the jet or to an artificial pertur- ~ An abrupt change of the contact angle at the nozzle tip
bation that would induce instability, as is typically done in may affect critically the droplet formation stage and, in par-
the literature. ticular, the droplet size and shape, as well as the time to
A straight nozzle with a slightly narrowed tip is assumedbreakup. Figure 11 presents simulated snapshots of droplet
in our jet simulations; however, the use of any other shape iformation using the corrected two-phase model. The grid
quite trivial in LB techniques in contrast to other numerical size is 200x 100 lattice sites; the nozzle diameter contains 25
methods. A simple “bounce-back” boundary condition hassites; the nozzle tip contains 21 sites; and the nozzle length
been used at the solid-fluid interface. The wettability condi-extends to 39 sites. Initially, the nozzle is filled with liquid,
tion at the nozzle wall is known to play significant role in jet whereas the rest of the working domain is filled with vapor,
dynamics. The desired wettability can be tuned by assignings shown in the first snapshot. The nozzle is assumed liquid
a desired profile of chemical potential,(r) to the walls.  wet, in contrast to the tip, which is strongly gaspon wet.
Gradients of the chemical potential act as a thermodynamiPeriodic boundary conditions are employed along the top
force on the fluid[15]. Alternatively, gradients of chemical and bottom sides of the simulated region, as explained in
potential can be imposed by assigning a density profjle) Sec. Il
to the solid sites, which corresponds to a chemical potential At the nozzle inlet, time dependent flow conditions may
profile according to the following expression: be imposed to simulate the periodic forcing profile used in

t=1 t=6000

FIG. 13. Simulation of satellite droplet forma-
tion, using the model proposed in this work. The
parameter values are,=0.06, v,=0.01, m
=1.25¢1073, kT=2.6x103, 0=1.35x10 2,
the corresponding densities apg=10, py=1,
and the reduced temperatureTisT,=0.77. Nge
=62.
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a) Time = 1000 Time = 1500
b) Time = 1000 Time = 1500 FIG. 14. Jet simulation usingg) the model

proposed in this work(b) an approximate Gal-
ilean restoration procedure that neglects certain
pressure termggc) the original, untreated model.

The parameter values are;=vy=0.125 m
=0.01, kT=0.55, ¢=0.02, the corresponding
densities arep;=4.895, pg=2.211, and the re-

duced temperature isT/T.=0.55. Ng~=38.
Charge period: 265 time steps. Lattice size: 300

¢) Time=1000 Time = 1500 x200.

ke e

ink-jet printing. In the present simulation runs, the constansnap-off, droplet rounding, and eventually droplet motion
“charge” stage lasts 500 time steps, followed by a “rest” away from the orifice. It must be stressed that the original
stage. During the “charge” stage, the momentum of themodel, that is, the one that does not preserve Galilean invari-
populations entering the nozzle in the mean flow direction isance, fails to reproduce droplet motion once formed. Instead,
increased 400 times per site to induce flow, for all sites alonghe droplet assumes an elliptic shape, just as the one shown
the first single column inside the nozzle. At the right bound-jn Fig. 8, and remains stationary.
ary of the working domain it is assumed thit,=0. If a second “charge” stage is employed following the
It is noteworthy that the simulator captures a number Ofqest” stage, a second droplet is generatéfdg. 12. The
phenomena that relate to droplet formation: generation of &5.ameter values are the same as those used in Fig. 11,
liquid meniscus, necking, gradual thinning of neck, threa hough the grid size is 250100 to provide more space for
the motion of the first droplet. The “rest” stage lasts 1000
029 ——{&=v (assumption oP/op = 0) time steps and the duration of the second “charge” stage is
---------- {=v(1-46P/op) (aP/ap = 0, this work) equal to that of the first “charge” stage, i.e., 500 time steps.
The momentum of the populations entering the nozzle in the
first “charge” stage is increased 450 times to induce flow,
but the corresponding increase in the second “charge” stage
i i i is only 360. Due to that, the second droplet is smaller than
0.1 A the first one, in accord with the relevant observations made
i ) P during actual ink-jet operation. It is also worth noting that
R / the simulator can follow the motion of both droplets in the
""""""" direction of momentum addition, in contrast to the original,
noncorrected model.
Jet Simulation The formation of satellite droplets during liquid ejection
: : : : . . from an orifice is of strong scientific and technological inter-
0 DISTANCE IN :OLOW DIRECTION (:.[;:TTICE SITES) 1%0 est, especially to ink-jet technologies and related applica-
tions, as it may affect severely the printing quality. Figure 13
FIG. 15. Variation of the correction factor used in this work in Shows that the present simulator, corrected for Galilean in-
the jet direction for the case of Fig. (8 at time=1000. Distance ~ variance, can reproduce this phenomenon in a quite realistic
from the lower nozzle wall: 1/5 nozzle width. Comparison with the manner. The wettability of the nozzle tip was modified, fol-
correction factor suggested by an approximate Galilean restoratiolowing a procedure adopted in ink-jetting practice, so that
procedure that neglects pressure terms. the outer portion of the tip is wetted preferentially by the

CORRECTION FACTORS

0.0
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Time = 15000

20000

22000

FIG. 16. Shear flow conditions imposed on a
droplet by the opposite direction of the top and
bottom walls at speed=0.11. Simulation results
using(a) the model proposed in this worlh) an
approximate Galilean restoration procedure that
neglects certain pressure ternfs) the original,
untreated model. The parameter values are
=v4=0.125,m=0.01, kT=0.55, ¢=0.02, and
the corresponding densities apg=4.895 and
pg=2.211. Lattice size: 500101.

Time = 15000

20000

22000

Time = 15000

20000

22000

vapor phase. One way to achieve this is by maintaining don of Galilean invariance are in order next. The approach
vapor “layer” there, which facilitates the formation of a neck used in this work takes into consideration all the terms that
well inside the nozzle region. The neck is elongated until itarise in the momentum equation prior to the correction pro-
ruptures at two points: first upfront, thus creating the maincedure. Excluding the pressure-dependent terms on the right-
droplet and, later, in the region of contact with the bulk lig- hand side of Eq(9) from the Galilean-invariance restoration
uid. The secondary droplet is then deformed, subject to therocedure would certainly simplify the analysis, leading to
action of the surface tension and, eventually, rounds up ansimple expressions for the expansion coefficients. Specifi-
travels in the vapor phase, following the primary droplet.cally, Eqs.(23) would in that case involve only the kinematic
The resemblance of the simulated snapshots to those comiscosity v in place of thel factor, defined in Eq(19). How-
puted using a finite elements technid®d] (which is, how- ever, this approximation may not be always accurate. For
ever, confined to the stage prior to interface rupture in coninstance, Fig. 14 shows that adoption of such a simplification
trast to the present methpds quite impressive. It is in a typical jet simulation could give rise to a different flow
reasonable to expect that simulations of this type can shegattern from that obtained by the full analysis. Nevertheless,
light to the conditions for satellite droplet formation in real it is clear that both approaches perform considerably differ-
systems and, possibly, guide the design of improved ink-jeent from the original approadlrig. 14(c)], that is, from the
processes. approach that uses the untreated pressure tensor. The devia-
Some useful remarks on the methodology for the restoration of the flow pattern of Fig. 1db) from that of Fig. 14a)
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can be traced to the different correction factors used in théation results with both the Laplace law and the Gibbs-
two approaches. Figure 15 shows an interesting variation dfhomson equations was obtained. A number of flow simula-
the ¢ factor in the jet direction, as results from the applica-tions involving liquid-vapor interfaces were carried out and
tion of the full analysis(dashed curve On the other hand, the importance of restoring the Galilean invariance was dem-
the simplified version of the Galilean-invariance restorationonstrated. In contrast to its predecessors, the simulator pre-
procedure would require a constant value fofnamely,{  sented here suppresses undesirable droplet deformation and
=, solid line, which may alter the values of the expansionreproduces known flow scenarios in straight tubes.
coefficientsA’, Ay, G,,, andG,, 4, affecting, thus, the flow The proposed simulator was also used for the study of jet
calculations. break-up and droplet generation, adopting the approach of

Figure 16 shows that the use of constant or variglitey ~ simple momentum addition at the entrance of a straight
result in different flow configurations even in simpler casesnozzle. It was seen that the simulator is capable of capturing
Shear flow conditions are induced by the motion of the topall the main events that are known to occur during liquid
and bottom walls in opposite directions. The droplet is ini-ejection and droplet formation, without having to resort to
tially allowed to relax for 10 000 time steps. Direct compari- any external disturbances to induce jet instability. The simu-
son of snapshots taken at the same time instants (@itlge  lator is also sufficiently stable to treat the singularity that
model presented here with given from Eq.(19), (b) the  develops at snap-off, in contrast to other numerical schemes
simplified Galilean restoration model that ugesv, and(c)  that can be used either before or after snap-off. Variable wet-
the original uncorrected model, reveals that the first twotability can also be implemented in a simple way by just
models lead to similar, but not identical, configurations—adjusting the local chemical potential or, alternatively, the
attained with a time lag—which are quite different from the density on the solid-fluid boundaries.

configuration predicted by the uncorrected model. As a general conclusion, it can be stated that the present
model can be very useful in the study of interfaces under
IV. CONCLUSIONS both static and flow conditions. Its main contribution is to-

wards understanding some key mechanisms that underlie
A Galilean-invariant two-dimensional(2D) lattice- interface stability, deformation, and propagation during
Boltzmann model, capable of simulating two-phase systemgyo-phase flow and phase separation. Nonetheless, the em-
is presented in this work. The model is based on the originabloyment of this approach to actual technological problems,

work of Swift, Osborn, and Yeomai$5] though the Navier-  jike ink-jet printing, requires the development of its 3D ver-
Stokes equation is fully recovered here and Galilean invarisjon, which is already in progress by the authors.

ance is preserved, thanks to an appropriate reformulation of

the motion equation and a modified form of the pressure

tensqr. Once the basic model is developed, one can use the ACKNOWLEDGMENTS
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