
,

PHYSICAL REVIEW E, VOLUME 65, 056702
Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics
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A two-dimensional two-phase lattice-Boltzmann model is presented and used for the study of interfacial
phenomena under static and flow conditions. The model is based on the nonideal lattice-Boltzmann model
proposed originally by Swift, Osborn, and Yeomans@Phys. Rev. Lett.75, 830~1995!# and makes it possible to
couple a prescribed equation of state with the pressure tensor at the interface and the excess free-energy density
formalism. The characteristic feature of the present model is that Galilean invariance is restored in the presence
of interfaces without sacrificing any of the merits of the original model and, hence, the Navier-Stokes equation
is adequately~to second order! recovered. The fluid properties can be prescribed in a thermodynamically
consistent manner, which remains accurate at states close to the critical point. The model is first validated
through static equilibrium tests and then applied to flow systems. It is shown that the simulator can reproduce
some known two-phase flow configurations, like the motion of deformable droplets under the action of an
external flow field. The simulator can also capture some interesting events during jet breakup and can be useful
for the parametric study of the process in the two-dimensional case.

DOI: 10.1103/PhysRevE.65.056702 PACS number~s!: 83.85.Pt, 68.03.Cd, 83.50.2v
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I. INTRODUCTION

Lattice-Boltzmann~LB! methods have provided a powe
ful alternative to traditional numerical techniques for t
study of equilibrium and dynamic properties of fluid sy
tems. Since the first attempts to simulate hydrodynamic p
nomena using lattice-gas~LG! automata by Frisch, Has
slacher, and Pomeau~FHP! @1#, numerous publications hav
appeared in this area, reflecting very intensive research
forts in mesoscopic simulations of fluid systems. The init
drawbacks of numerical noise, non-Galilean invariance,
velocity dependent pressure of the lattice-gas methods w
later addressed successfully in the lattice-Boltzmann meth
The LG Boolean variables and the Fermi-Dirac equilibriu
distribution function @2# have been replaced by single
particle distribution functions and Boltzmann statistics@3,4#.
Furthermore, the collision operator formulation was replac
by the single relaxation time approximation, introduced i
tially by Bhatnagar, Gross, and Krook~BGK! @5#, which
simplified considerably the LB formulation and numeric
computations.

LG and LB models proved very useful in the particul
case of two-phase flow due to both the complexity enco
tered when traditional techniques were to be employed in
interface region and the strong scientific and technolog
interest of multiphase systems. Rothman and Keller@6# pro-
posed a two-component LG model, whereas Gustensen
co-workers @7,8# employed Boltzmann statistics in the
model introducing, thus, a multiphase LB model. Modific
tions to account for different viscosities and rest parti
populations in the two phases and to satisfy the stand
interfacial conditions at first order were proposed by Gin
bourg and Adler@9#. Grunau and co-workers@10,11# simpli-
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fied their model by replacing the collision operator with
single-time relaxation factor. In these models, phase sep
tion is achieved through a phenomenological ‘‘antidiffusio
potential, which can be somehow connected to the interfa
tension. Appert and co-workers@12,13# proposed a two-
phase LG model, which was based on the basic LG sin
phase model with the additional feature of allowing for m
mentum exchange between remote particles. The interac
of those particles eventually leads to phase transition.
momentum exchange is dictated either by a simple se
rules, based mainly on the distance of particles considere
pairs, or by more complicated rules, applied to the en
particle ensemble. Shan and Chen@14# proposed an alterna
tive approach: a special microscopic interaction affect
nearest neighbors only can be shown to correspond to a
ideal equation of state, allowing thus for coexistence of t
or more phases. A temperaturelike parameter is involved
the modeling of the phase transition.

Swift and co-workers@15,16# proposed a LB model for
isothermal two-phase systems, using a Cahn-Hilliard@17#
type of approach for phase transition. The system reac
equilibrium when the free-energy functional, quantified a
cording to the van der Waals square-gradient approxima
@18#, is minimized. The interfacial phenomena are control
by the pressure tensor, suitably formulated for nonideal
ids, whereas the surface tension is expressed according t
van der Waals theory of capillarity. Angelopouloset al. @19#
introduced a methodology for the prescription of the flu
properties in this LB model and applied it to two-phase flo
problems, such as drainage and imbibition in porous me
under various wettability conditions.

Recent LB multiphase techniques have adopted the di
discretization of the full Boltzmann equation, initially pro
posed by He and Luo@20#, Luo @21#, and, independently, by
Abe @22#. In order to account for the nonideality of dens
gases, the extended Boltzmann equation, as initially proo
©2002 The American Physical Society02-1
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by Enskog@23#, should be used. Including terms that beco
non-negligible for dense fluids@21#, such as the volume ex
clusion corrections, the extended discrete Boltzmann eq
tion leads to a nonideal state equation, which allows
phase coexistence. In addition, He, Shan, and Doolen@24#
have proposed a slightly different scheme based on the
crete Boltzmann equation, assuming that the velocity der
tive of the nonequilibrium distribution functions (¹cf neq)
can be neglected. The force in the Boltzmann equation
made up of two contributions, namely, the mean force
each particle due to the intermolecular attraction and
force associated with the volume exclusion effect~Enskog
analysis@23#!. Consideration of these two factors leads to
nonideal equation of state.

In this work, an improvement of the single-compone
two-phase seven-bit LB model by Swift, Osborn, and Ye
mans@15# and Angelopouloset al. @19# is proposed and use
to simulate droplet formation and droplet motion under
external flow field. A potential weakness of the origin
model, as has been already pointed out@16,21#, is the lack of
Galilean invariance. Because of that, transient or steady s
flow simulations may lead to reduced accuracy in the ca
lation of the flow field or in the shape and velocity of movin
droplets. Nevertheless, it is shown here that Galilean inv
ance can be restored, to second-order accuracy, using a
formulation for the definition of the zero-order momentu
flux tensor. A similar approach to restore Galilean invarian
in the nine-bit model@25# has demonstrated greatly im
proved performance during simulation of Couette flow, a
shear and translation of a droplet. Inamuro, Konishi, a
Ogino @26# used an asymptotic analysis to restore Galile
invariance also in the nine-bit model.

This paper is organized as follows. Section II presents
outline of the original model in two-dimensions~2D! along
with an algorithm for the step-by-step prescription of t
fluid properties. The model and the details of the formulat
that restores Galilean invariance are also presented th
Section III shows the results of the applications of the mo
to static and flow problems, including jet breakup and dro
let formation. The main conclusions of this work are su
marized in Sec. IV.

II. LATTICE-BOLTZMANN TWO-PHASE MODEL

The lattice-Boltzmann equation in view of the BGK a
proximation is

f i~xI 1eI i ,t11!5 f i~xI ,t !2
f i~xI ,t !2 f i

eq~xI ,t !

t
, ~1!

wheret is the relaxation time and subscripti indicates the
link direction in a single cell~i 50,1, . . . ,b; b being the
number of links from a node to its nearest neighbors an
indicating rest population!.

Swift, Osborn, and Yeomans@15# proposed the following
expansion of the equilibrium distribution function for us
with two-phase systems:
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f i
eq5A1B~eI i•uI !1C~eI i•uI !21DuI 21G= :eI ieI i1FI eI i ,

~2a!

f 0
eq5A01D0u2. ~2b!

The coefficients for the 2D hexagonal lattice are given b

A05r22~p02mr¹2r!5r26A , A5
p02mr¹2r

3
,

~3a!

B5r/3, ~3b!

C52r/3, ~3c!

D052r, D52r/6, ~3d!

Gxx5
m

3 F S ]r

]xD 2

2S ]r

]yD 2G52Gyy , Gxy5
2m

3

]r

]x

]r

]y
,

~3e!

Fx5Fy50, ~3f!

wherer is density andm a fluid parameter~see below!.

A. Prescription of the fluid properties

Using the basic equilibrium equations for a van der Wa
fluid, Angelopouloset al. @19# derived useful expressions fo
the density variation across the interface between the gas
liquid phases. The correlation between the interface thi
nessD and the equilibrium fluid densities is given by

m5
3Ds

2~r l2rg!2 , ~4!

wheres is the interfacial tension, expressed as

s5mE
2`

` S ]„r~z!…

]z D 2

dz ~5!

in the van der Waals theory.
The kinematic viscosity within the interface region is a

proximated by

n~r!5
~n l2ng!r1ngr l2n lrg

r l2rg
, ~6!

wheren l and ng are the kinematic viscosities of the liqui
and vapor phases, respectively, and relate to the corresp
ing relaxation time constants through

n j5
2t j21

8
, j 5 l ,g. ~7!

It is shown that the mass and momentum conservation e
tions for the fluid are the following:

Mass conservation equation,

]

]t
r1¹•ruI 50. ~8!
2-2
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Momentum conservation equation,

]

]t
~ruI !1¹•~ruI uI !52¹P= 1¹F S 2t21

8 D r$¹uI 1~¹uI !t%G
1¹F S t2

1

2D S 1

4
2

]P

]r D r~¹•uI !G
1¹F S 2t21

8 D S 12
1

4

]P

]r D $uI ¹r

1~uI ¹r!t%G1¹F S t2
1

2D S 1

4
2

]P

]r D
3~uI •¹r!G1O~u3!, ~9!

where the equation]aPab5]rP]ar was used, withr and
ruI the macroscopic local density and momentum dens
respectively,

r5(
i

f i
eq, ~10!

ruI 5(
i

eI i f i
eq. ~11!

In Eq. ~9!, P= is the pressure tensor for a nonuniform flu
@27#,

P= 5Pd=1m¹r¹r,

or

P= 5S p02mr¹2r2
m

2 U¹rU2D d=1m¹r¹r, ~12!

wherep0 is the fluid pressure, connected to the temperat
through the equation of state, andm is the parameter tha
enters the expression for the free-energy functional acc
ing to the square-gradient approximation,

F@r~rI !#5E dr@ 1
2 mu¹r~rI !u21c̃„r~rI !…#. ~13!

In Eq. ~13!, c̃(r) is the local free-energy density of the flui
of uniform densityr.

Comparing Eq.~9! with the actual Navier-Stokes equa
tion,

]

]t
~ruI !1¹•~ruI uI !52¹P1¹•@m$¹uI 1~¹uI !t%#

1¹@~k2m!¹•uI #1rgI , ~14!

the kinematic viscosityn and the bulk viscosityk can be
identified, as

n5
2t21

8
, ~15a!
05670
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52S 122

]P

]r D n. ~15b!

The LB momentum equation resembles closely the Nav
Stokes equation except for the last two terms, which con
density gradients and may, thus, be responsible for the
of Galilean invariance. The usual assumption made in sin
phase systems, namely, that these additional terms ar
order O(u3)—since density gradients areO(u2)—and,
therefore, are negligible@28#, is not valid for multiphase sys
tems. The density gradients may obtain large values wit
the interface region, depending on the interface thickness
the bulk density difference. As it will be shown below,
these effects are not accounted for properly by restoring G
ilean invariance, they may lead to very erroneous results

In index notation, the LB motion equation assumes
following form:

] t~rua!1]b~ruaub!52]aPab1]bbnr~]aub1]bua!c

1]bS n8(
g

]grugdabD
1]b@n8~ub]ar1ua]br!#. ~16!

The symbols]b and] t represent the spatial and time deriv
tives, respectively, andn8 is given by

n85nS 124
]P

]r D . ~17!

In order to restore the Galilean invariance, the last two ter
of Eq. ~16! must be eliminated. A way to achieve this is b
merging them into the pressure term, which should then h
the following form:

Pab8 5Pab1z~ub]ar1ua]br!1j(
g

ug]grdab. ~18!

The unknown coefficientsz, j can subsequently be dete
mined in order for Eq.~16! to coincide with the Navier-
Stokes equation. The resulting expressions are

z5j5n85nS 124
]P

]r D . ~19!

A similar result for the nine-bit model but withz5n was
obtained by Inamuroet al. @26# using an asymptotic analysis
and by Holdychet al. @25#, who considered the terms tha
involve the pressure derivative with respect to density
negligible. Although this assumption may be valid in ma
cases, it is evident that the magnitude of the]P/]p term
depends on the state equation and the values of the equ
constants. Hence, for the sake of generality, the full expr
sion ~16! was considered in the present analysis, leading
the appearance of the]P/]p term in Eq.~19!.

The momentum flux tensor is given by the expression

Pab
~0!5(

i 51

6

~eI ieI i ! f i
eq5Pab8 1ruaub . ~20!
2-3
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Substituting the equilibrium distribution expansion in t
above expression and following algebraic manipulations
can be shown that the momentum flux tensor can be wri
as follows:

(
i 51

6

~eI ieI i ! f i
eq5Pab1n8~ub]ar1ua]br!

1n8(
g

ug]grdab1ruaub

or

Pab1ruaub53A8dab1 3
2 ~Gab8 1C8uaub!

2n8~ub]ar1ua]br!2n8(
g

ug]grdab

5S 3A82n8(
g

ug]gr D dab

1@ 3
2 Gab8 2n8~ub]ar1ua]br!#1ruaub .

~21!

Using Eq.~12! in index notation, the left-hand side reads

Pab1ruaub5S p02mr¹2r2
m

2
u¹ru2D dab1m]ar]br

1ruaub . ~22!

Combining Eqs.~20!–~22!, the coefficients of the equilib
rium distribution expansion for the Galilean invariant mod
are obtained~primed quantities!,

A85A1 2
3 n8(

g
ug]gr, ~23a!

A085A024n8(
g

ug]gr, ~23b!

B85B, C85C, D85D, D085D0 ,

Gaa8 5Gaa1 2
3 n8~ua]ar2ub]br!, ~23c!

FIG. 1. Solid~filled circles!, fluid ~open circles!, and boundary
~gray circles! nodes in the hexagonal lattice.
05670
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Gab8 5Gab1 2
3 n8~ub]ar1ua]br!. ~23d!

B. Boundary conditions

Three types of boundary conditions are of relevance h
boundary conditions that induce flow, solid-fluid bounda
conditions, and conditions related to the finite size of t
working domain. Flow conditions can be implemented
two ways: a pressure~or density! gradient can be imposed i
the desired direction of flow, or the velocity can be pr
scribed at the inlet or outlet of the system. Periodic bound
conditions allow populations leaving the working domain
reenter in the same direction through the opposite bou
aries.

There are several types of solid-fluid boundary conditio
that can be used in LB models, including the typic
‘‘bounce-back’’ condition and also some more complicat
ones@29#. In our computations, both the ‘‘bounce-back’’ an
a ‘‘relaxed bounce-back’’ condition have been tested. T
latter is an improved ‘‘bounce-back’’ condition imposed
the boundary nodes, which are also assumed to suffer c

FIG. 2. Laplace law test for a 2D droplet. The solid line repr
sents the Laplace law equation and the symbols indicate the s
lation results.

FIG. 3. Comparison of the simulated pressure differences~liq-
uid, vapor! from the common pressure for a flat interface~symbols!,
with the theoretical calculations from the Gibbs-Thomson equati
~solid lines!.
2-4



-

l

is

GALILEAN-INVARIANT LATTICE-BOLTZMANN . . . PHYSICAL REVIEW E 65 056702
FIG. 4. Simulation of a moving tube contain
ing an initially circular droplet in equilibrium
with its vapor. The original 2D two-phase mode
was used. The parameter values aren l5ng

50.125,kT50.37,m50.015, the corresponding
densities of the two phases arer l54.895, rg

52.211, and the corresponding surface tension
s50.02.NRe5105.
s

li
m

ca in
is
sions. Nevertheless, use of one or the other condition ha
discernible effect on the flow field provided thatt<1. For
moving walls, a ‘‘no-slip’’ constraint@30# is imposed on the
fluid populations that are immediately adjacent to the so
surface. The unknown distribution functions, directed fro
the solid sites into the fluid, are calculated from the lo
macroscopic density~r! and momentum (ruI ) equations,
05670
no

d

l

r5(
i

f i , ~24!

ruI 5(
i

eI i f i . ~25!

For instance, the unknown populations in Fig. 1 move
directions 2, 3 (f 2 , f 3). The density at the boundary node
-

i-
m-
. 4.
FIG. 5. Simulation of a moving tube contain
ing an initially circular droplet in equilibrium
with its vapor. The corrected for Galilean invar
ance 2D two-phase model was used. The para
eter values are the same as those used in Fig
NRe5105.
2-5
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also to be calculated. If the wall is impermeable, they com-
ponent of the velocity (uy) is zero. Once the horizontal ve
locity component (ux) is set to the desired value of the wa
velocity, the unknown local populations can be calcula
from the following set of equations:

r5 f 01 f 11 f 21 f 31 f 41 f 51 f 6 , ~26a!

rux5 f 12 f 41 1
2 ~ f 21 f 62 f 32 f 5!, ~26b!

ruy5 )
2 ~ f 21 f 32 f 52 f 6!50. ~26c!

FIG. 6. Velocity field in and around a droplet in a moving tub
using the original 2D two-phase model. The parameter values
the same as those used in Fig. 4.

FIG. 7. Velocity field in and around a droplet in a moving tub
using the 2D two-phase model, corrected for Galilean invarian
The parameter values are the same as those used in Fig. 4.
05670
d

III. RESULTS AND DISCUSSION

A. Equilibrium simulations

Before using the Galilean-invariant model in flow sim
lations, some basic validation runs are performed. Firs
droplet at equilibrium with its vapor is simulated in the a
sence of external flow field. The grid size is 1283128 lattice
sites and periodic boundary conditions are employed aro
the working domain. The input data aren l5ng50.125,kT
50.55, m50.01, andr l54.895, rg52.211. Following the
algorithm proposed by Angelopouloset al. @19# and the dis-
cussion made in Sec. II, the corresponding van der Wa
coefficients area5 9

49 , b5 2
21 , the interface thickness isD

52.385, and the corresponding surface tension iss50.02.
The pressure difference across the interface is calculated
ter about 40 000 time steps to ensure that the system is
equilibrated. In Fig. 2 the pressure difference is plott
against the droplet curvature. The continuous line repres
the Laplace law for the prescribed surface tensions
50.02). An excellent agreement is noted, the maximum re
tive error between the prescribed surface tension and the
culated one being less than 1%.

Another test of thermodynamic consistency of the mo
is presented in Fig. 3. The quantitiesPl2P0 andPg2P0 are
plotted against the droplet curvature, wherePl is the liquid
pressure,Pg is the gas pressure, andP0 is the corresponding
pressure for a flat interface. The parameter values are
same as those in the Laplace law test and the grid siz
1283128 lattice sites. The theoretical values of the afo
mentioned pressure differences are calculated from
Gibbs-Thomson equations and represented with the solid
dashed lines for the liquid and gas phases, respectively,

Pl5P01
r l

r l2rg

s

R
, ~27a!

Pg5P01
rg

r l2rg

s

R
. ~27b!

Again, an excellent agreement between the theoretical
the calculated values is obtained.

The spurious currents in the interface region are sligh
reduced upon restoration of the Galilean invariance. It w
found that for a droplet at equilibrium with its vapo
(n l5ng50.125,kT50.37, m50.015,r l54.895,rg52.211,
s50.02) the mean magnitudes of these velocities in the
cases are 0.431023 and 0.3531023, respectively, while the
corresponding maximum values are 1.031023 and 0.8
31023. These values are quite small given that the spuri
currents in the original van der Waals LB model were
ready reduced by three orders of magnitude compared
those in the two-phase LB model by Shan and Chen@14#,
which, in turn, were lower@31# than the LG model propose
by Rothman and Keller@6# or the corresponding LB mode
proposed by Gustensenet al. @7# and Grunau, Chen, and Eg
gert @11#.

re

e.
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FIG. 8. Simulation of droplet motion in a sta
tionary tube, subject to an externally applie
pressure drop. The original 2D two-phase mod
was used. The parameter values are the sam
those used in Fig. 4.NRe5100.
th
io
m
all
al-

The

of
e-

the
B. Flow simulations

Flow simulations were carried out to demonstrate
practical significance of the Galilean-invariance restorat
in simple two-phase systems. Figures 4 and 5 show si
lated snapshots of a moving tube that contains an initi
circular droplet, using the original model, which lacks G
05670
e
n
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ilean invariance, and the corrected model, respectively.
solid-fluid ‘‘no-slip’’ boundary condition mentioned in the
preceding section was used. The velocity in the direction
the tube motion (ux) was set equal to 0.1, whereas the v
locity component normal to the wall (uy) was set equal to
zero. Periodic boundary conditions were employed in
-
d
del
e as
FIG. 9. Simulation of droplet motion in a sta
tionary tube, subject to an externally applie
pressure drop. The corrected 2D two-phase mo
was used. The parameter values are the sam
those used in Fig. 4.NRe5100.
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direction of the tube motion. The grid size is 1283135 lat-
tice sites and the Reynolds number isNRe5d^ux&/nl5105,
whered is the tube diameter and̂ux& is the mean value o
the x component of the velocity, calculated at the tube e
trance. Figure 4 shows that the lack of Galilean invarian
leads to strong deformation of the droplet, which assum
eventually an elliptic shape with aspect ratio equal to 3. T
droplet appears to be very slightly affected by the tube m
tion and by the concomitant flow that develops, and even
ally comes to rest. On the contrary, Fig. 5 shows that
model allows the droplet to retain its initial shape and
undergo a smooth motion along the mean flow directi
Figures 6 and 7 show the corresponding velocity profi
using the original and the corrected model, respectively

FIG. 10. Aspect ratio~size in the direction of flow to size in the
transverse direction! of droplet moving in the absence of walls v
droplet velocity. Despite the use of a moving coordinate system,
droplet shape remains, practically, unaffected when the corre
model is used~Galilean invariance is restored!. The parameter val-
ues aren l50.125,ng50.125,m50.015,kT50.37, s50.02, and
the corresponding densities arer l54.895,rg52.211.
05670
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e
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the former case, the droplet acts as an obstacle to the
flow, moving at a largely different speed from that of th
tube, whereas in the latter case the droplet has acquired
speed of the tube wall.

Similar results are obtained in flows driven by an ext
nally applied pressure drop. The tube wall is held station
and, consequently, the ‘‘no-slip’’ solid-fluid boundary cond
tion is used, as mentioned in Sec. II. The grid size is 1
3107 lattice sites. The parameter values are the sam
those in the moving tube case. Simulated snapshots using
original and the corrected model are shown in Figs. 8 and
respectively. Again, lack of Galilean invariance leads to
elliptic shape with aspect ratio being equal to 1.8, wher
the droplet remains circular in the corrected model. Alo
the inlet face~left end!, momentum is added to the popula
tions that enter the tube, at a rate that is proportional to
prescribed pressure gradient. The populations that exit
tube through the inlet face set the corresponding populat
that enter through the exit face~periodic boundary condi-
tion!. In the absence of walls, the original model predicts t
the aspect ratio of the droplet decreases rapidly with incre
ing flow rate or, equivalently, with increasing speed of t
coordinate system that moves along with the droplet~Fig.
10!. However, restoration of the Galilean invariance remov
this artifact and leaves the droplet shape practically un
fected by the droplet speed.

C. Jet dynamics

Jet instability and droplet formation have been stud
using a variety of numerical techniques, including finite d
ferences, finite elements, and finite volumes. Recen
lattice-Boltzmann schemes for incompressible multiph
flows have been developed in order to simulate the Rayle
Taylor instability and the concomitant droplet formatio
@32,33#. It is beyond the scope of the present work to revie
this literature or to assess the performance of the vari

e
ed
n
is
FIG. 11. Simulation of droplet generatio
from an orifice, using the model proposed in th
work. The parameter values aren l50.02, ng

50.05, m51023, kT54.5631023, s56.88
31022, the corresponding densities arer l520,
rg51, and the reduced temperature isT/Tc

50.68.NRe578.
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FIG. 12. Simulation of sequential droplet gen
eration from an orifice, using the model propos
in this work. The parameter values are the sa
as those used in Fig. 11.
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computational techniques. Instead, it is very interesting
demonstrate here the capability of the LB two-phase mo
corrected for Galilean invariance, to simulate the main
related phenomena, without resorting to any assumption
garding the initial shape of the jet or to an artificial pertu
bation that would induce instability, as is typically done
the literature.

A straight nozzle with a slightly narrowed tip is assum
in our jet simulations; however, the use of any other shap
quite trivial in LB techniques in contrast to other numeric
methods. A simple ‘‘bounce-back’’ boundary condition h
been used at the solid-fluid interface. The wettability con
tion at the nozzle wall is known to play significant role in j
dynamics. The desired wettability can be tuned by assign
a desired profile of chemical potentialmw(rI ) to the walls.
Gradients of the chemical potential act as a thermodyna
force on the fluid@15#. Alternatively, gradients of chemica
potential can be imposed by assigning a density profilerw(rI )
to the solid sites, which corresponds to a chemical poten
profile according to the following expression:
05670
o
l,

t-
e-

is
l

i-

g

ic

al

m~r,T!5kT ln
r

12br
1

kT

12br
22ar ~28!

as explained by Angelopouloset al. @19#.
An abrupt change of the contact angle at the nozzle

may affect critically the droplet formation stage and, in p
ticular, the droplet size and shape, as well as the time
breakup. Figure 11 presents simulated snapshots of dro
formation using the corrected two-phase model. The g
size is 2003100 lattice sites; the nozzle diameter contains
sites; the nozzle tip contains 21 sites; and the nozzle len
extends to 39 sites. Initially, the nozzle is filled with liquid
whereas the rest of the working domain is filled with vap
as shown in the first snapshot. The nozzle is assumed liq
wet, in contrast to the tip, which is strongly gas~vapor! wet.
Periodic boundary conditions are employed along the
and bottom sides of the simulated region, as explained
Sec. II.

At the nozzle inlet, time dependent flow conditions m
be imposed to simulate the periodic forcing profile used
-
e

FIG. 13. Simulation of satellite droplet forma
tion, using the model proposed in this work. Th
parameter values aren l50.06, ng50.01, m
51.2531023, kT52.631023, s51.3531022,
the corresponding densities arer l510, rg51,
and the reduced temperature isT/Tc50.77. NRe

562.
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FIG. 14. Jet simulation using~a! the model
proposed in this work,~b! an approximate Gal-
ilean restoration procedure that neglects cert
pressure terms,~c! the original, untreated model
The parameter values aren l5ng50.125, m
50.01, kT50.55, s50.02, the corresponding
densities arer l54.895, rg52.211, and the re-
duced temperature isT/Tc50.55. NRe538.
Charge period: 265 time steps. Lattice size: 3
3200.
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ink-jet printing. In the present simulation runs, the const
‘‘charge’’ stage lasts 500 time steps, followed by a ‘‘res
stage. During the ‘‘charge’’ stage, the momentum of t
populations entering the nozzle in the mean flow direction
increased 400 times per site to induce flow, for all sites alo
the first single column inside the nozzle. At the right boun
ary of the working domain it is assumed that]xux50.

It is noteworthy that the simulator captures a number
phenomena that relate to droplet formation: generation o
liquid meniscus, necking, gradual thinning of neck, thre

FIG. 15. Variation of the correction factor used in this work
the jet direction for the case of Fig. 14~a! at time51000. Distance
from the lower nozzle wall: 1/5 nozzle width. Comparison with t
correction factor suggested by an approximate Galilean restora
procedure that neglects pressure terms.
05670
t

s
g
-

f
a

d

snap-off, droplet rounding, and eventually droplet moti
away from the orifice. It must be stressed that the origi
model, that is, the one that does not preserve Galilean inv
ance, fails to reproduce droplet motion once formed. Inste
the droplet assumes an elliptic shape, just as the one sh
in Fig. 8, and remains stationary.

If a second ‘‘charge’’ stage is employed following th
‘‘rest’’ stage, a second droplet is generated~Fig. 12!. The
parameter values are the same as those used in Fig
though the grid size is 2503100 to provide more space fo
the motion of the first droplet. The ‘‘rest’’ stage lasts 100
time steps and the duration of the second ‘‘charge’’ stag
equal to that of the first ‘‘charge’’ stage, i.e., 500 time ste
The momentum of the populations entering the nozzle in
first ‘‘charge’’ stage is increased 450 times to induce flo
but the corresponding increase in the second ‘‘charge’’ st
is only 360. Due to that, the second droplet is smaller th
the first one, in accord with the relevant observations m
during actual ink-jet operation. It is also worth noting th
the simulator can follow the motion of both droplets in th
direction of momentum addition, in contrast to the origin
noncorrected model.

The formation of satellite droplets during liquid ejectio
from an orifice is of strong scientific and technological inte
est, especially to ink-jet technologies and related appli
tions, as it may affect severely the printing quality. Figure
shows that the present simulator, corrected for Galilean
variance, can reproduce this phenomenon in a quite real
manner. The wettability of the nozzle tip was modified, fo
lowing a procedure adopted in ink-jetting practice, so th
the outer portion of the tip is wetted preferentially by th

on
2-10
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FIG. 16. Shear flow conditions imposed on
droplet by the opposite direction of the top an
bottom walls at speedu50.11. Simulation results
using~a! the model proposed in this work,~b! an
approximate Galilean restoration procedure th
neglects certain pressure terms,~c! the original,
untreated model. The parameter values aren l

5ng50.125, m50.01, kT50.55, s50.02, and
the corresponding densities arer l54.895 and
rg52.211. Lattice size: 5003101.
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vapor phase. One way to achieve this is by maintainin
vapor ‘‘layer’’ there, which facilitates the formation of a nec
well inside the nozzle region. The neck is elongated unt
ruptures at two points: first upfront, thus creating the m
droplet and, later, in the region of contact with the bulk li
uid. The secondary droplet is then deformed, subject to
action of the surface tension and, eventually, rounds up
travels in the vapor phase, following the primary dropl
The resemblance of the simulated snapshots to those c
puted using a finite elements technique@34# ~which is, how-
ever, confined to the stage prior to interface rupture in c
trast to the present method! is quite impressive. It is
reasonable to expect that simulations of this type can s
light to the conditions for satellite droplet formation in re
systems and, possibly, guide the design of improved ink
processes.

Some useful remarks on the methodology for the resto
05670
a

it
n

e
d

.
m-
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ed

t

a-

tion of Galilean invariance are in order next. The approa
used in this work takes into consideration all the terms t
arise in the momentum equation prior to the correction p
cedure. Excluding the pressure-dependent terms on the r
hand side of Eq.~9! from the Galilean-invariance restoratio
procedure would certainly simplify the analysis, leading
simple expressions for the expansion coefficients. Spe
cally, Eqs.~23! would in that case involve only the kinemat
viscosityn in place of thez factor, defined in Eq.~19!. How-
ever, this approximation may not be always accurate.
instance, Fig. 14 shows that adoption of such a simplificat
in a typical jet simulation could give rise to a different flo
pattern from that obtained by the full analysis. Neverthele
it is clear that both approaches perform considerably diff
ent from the original approach@Fig. 14~c!#, that is, from the
approach that uses the untreated pressure tensor. The d
tion of the flow pattern of Fig. 14~b! from that of Fig. 14~a!
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can be traced to the different correction factors used in
two approaches. Figure 15 shows an interesting variatio
the z factor in the jet direction, as results from the applic
tion of the full analysis~dashed curve!. On the other hand
the simplified version of the Galilean-invariance restorat
procedure would require a constant value forz ~namely,z
5n, solid line!, which may alter the values of the expansi
coefficientsA8, A08 , Gaa8 , andGab8 , affecting, thus, the flow
calculations.

Figure 16 shows that the use of constant or variablez may
result in different flow configurations even in simpler cas
Shear flow conditions are induced by the motion of the
and bottom walls in opposite directions. The droplet is i
tially allowed to relax for 10 000 time steps. Direct compa
son of snapshots taken at the same time instants using~a! the
model presented here withz given from Eq.~19!, ~b! the
simplified Galilean restoration model that usesz5n, and~c!
the original uncorrected model, reveals that the first t
models lead to similar, but not identical, configurations
attained with a time lag—which are quite different from t
configuration predicted by the uncorrected model.

IV. CONCLUSIONS

A Galilean-invariant two-dimensional~2D! lattice-
Boltzmann model, capable of simulating two-phase syste
is presented in this work. The model is based on the orig
work of Swift, Osborn, and Yeomans@15# though the Navier-
Stokes equation is fully recovered here and Galilean inv
ance is preserved, thanks to an appropriate reformulatio
the motion equation and a modified form of the press
tensor. Once the basic model is developed, one can use
algorithm proposed by Angelopouloset al. @19# for the pre-
scription of the desired fluid properties, including viscositi
surface tension, and temperature.

Simulation tests have been performed to validate
model. Excellent agreement between the static droplet si
Y

n,

ys
.

tt
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lation results with both the Laplace law and the Gibb
Thomson equations was obtained. A number of flow simu
tions involving liquid-vapor interfaces were carried out a
the importance of restoring the Galilean invariance was de
onstrated. In contrast to its predecessors, the simulator
sented here suppresses undesirable droplet deformation
reproduces known flow scenarios in straight tubes.

The proposed simulator was also used for the study of
break-up and droplet generation, adopting the approach
simple momentum addition at the entrance of a strai
nozzle. It was seen that the simulator is capable of captu
all the main events that are known to occur during liqu
ejection and droplet formation, without having to resort
any external disturbances to induce jet instability. The sim
lator is also sufficiently stable to treat the singularity th
develops at snap-off, in contrast to other numerical sche
that can be used either before or after snap-off. Variable w
tability can also be implemented in a simple way by ju
adjusting the local chemical potential or, alternatively, t
density on the solid-fluid boundaries.

As a general conclusion, it can be stated that the pre
model can be very useful in the study of interfaces un
both static and flow conditions. Its main contribution is t
wards understanding some key mechanisms that und
interface stability, deformation, and propagation duri
two-phase flow and phase separation. Nonetheless, the
ployment of this approach to actual technological problem
like ink-jet printing, requires the development of its 3D ve
sion, which is already in progress by the authors.
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